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Abstract
An inhomogeneous gauge transformation law for non-Abelian two-forms in
B ∧ F type theories is proposed and corresponding invariant actions are
discussed. The auxiliary one-form, required for maintaining vector gauge
symmetry in some of these theories, transforms like a gauge field, and
hence cannot be set to zero by a gauge choice. It can be set equal to the
usual gauge field by a gauge choice, leading to gauge equivalences between
different types of theories, those with the auxiliary field and those without.
A new type of symmetry also appears in some of these theories, one which
depends on local functions but cannot be generated by local constraints. The
corresponding conserved currents and BRST charges are parametrized by the
space of flat connections.

PACS numbers: 11.30.Ly, 03.50.Kk, 11.10.Lm

1. Introduction

The non-Abelian two-form, or antisymmetric tensor potential, was introduced in the context
of nonlinear σ -models [1–3] via an interaction term Tr B ∧ F . Here B is a two-form potential
in the adjoint representation, and F is the field strength of the gauge field A. An action
made up of this term alone is a Schwarz-type topological field theory [4–7]. It generalizes
to four dimensions the familiar three-dimensional Chern–Simons action [8–10]. This action
is diffeomorphism invariant, and serves as a toy model for some features of quantum gravity
[11, 12]. Modifications involve adding a suitably chosen quadratic term, sometimes sacrificing
diffeomorphism invariance, but leading to different physical theories. For example, Einstein
gravity with a cosmological term can be recovered by adding a B ∧ B term [13–15]. When
the gauge group is taken to be SU(N ), modifications of the B ∧ F action lead to Yang–Mills
theory in a first-order formulation [16–19] or in a loop space formulation [20, 21]. In these
models, the two-form appears as a field without its own dynamics. A theory where the
two-form is dynamical can be constructed by introducing a kinetic term [22, 23]. This also
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happens to be a non-Abelian generalization of a mass generation mechanism for vector fields
in four dimensions, which does not have a residual Higgs particle in the spectrum [24–29].
The corresponding non-Abelian theory appears to be stable under quantization upon using
standard algebraic techniques of path integral quantization [30–32].

Despite its wide applicability, the nature of the non-Abelian two-form remains obscure.
A two-form couples naturally to a world surface, so one possible description of this is as a
gauge field for strings. This is a consistent description for the Abelian two-form. However,
Teitelboim has argued [33] that ‘surface-ordered’ exponentials P exp(−q

∫
B d�) for the non-

Abelian two-form cannot be defined in a reparametrization invariant fashion. The proof
of this (and of all other results about the two-form) assumes that the two-form transforms
homogeneously in the adjoint under local gauge transformations.

In this paper, I suggest that there is enough ambiguity in the local transformations of
the two-form to allow an inhomogeneous gauge transformation law in place of the usual
homogeneous one. It will still be possible to construct gauge invariant actions, some identical
to known ones and some new ones. The dynamics and physical implications of these actions
will be mentioned briefly, but will not be discussed in depth. Some of these actions are
symmetric under local classical symmetries which are not generated by local constraints, a
novelty for classical field theories. Some results of this paper have been reported briefly in
[34], several details and new results are presented here.

In section 2 an inhomogeneous gauge transformation law is proposed for the non-Abelian
two-form. Several actions invariant under this transformation are constructed in section 3.
Vector gauge transformations are introduced in section 4 along with the auxiliary vector field,
which transforms as a gauge field as well. A new class of transformations is also discussed
there—local transformations which are not generated by local constraints. The connection-
like nature of the auxiliary field allows an alternative set of transformation rules and actions for
the non-Abelian two-form, discussed in section 5. These alternative rules and corresponding
actions are shown to be equivalent to the earlier ones. The main results are summarized in
section 6.

Notation: I shall use the notation of differential forms. The gauge connection one-form
(gauge field) is defined in terms of its components as A = −igAa

µta dxµ, where ta are the
(Hermitian) generators of the gauge group satisfying [ta, tb] = if abctc and g is the gauge
coupling constant. Any other coupling constant, which may be required in a given model,
will be assumed to have been absorbed in the corresponding field. An example is a coupling
constant m of mass dimension one, which appears in the action of some models as mB ∧ F ,
and may be absorbed into B. This will cause no problem since I am concerned solely with
classical systems and classical symmetries. The gauge group will be taken to be SU(N ) for
specificity. The gauge covariant exterior derivative of an adjoint p-form ξp will be written as

dA ξp ≡ d ξp + A ∧ ξp + (−1)p+1ξp ∧ A (1)

where d stands for the usual exterior derivative. The field strength is F = dA + A ∧ A, and
satisfies the Bianchi identity, dF + A ∧ F − F ∧ A = 0. Under a gauge transformation, the
gauge field transforms as A → A′ = UAU † − dUU †. For brevity, I will write φ ≡ −dUU †.
Note that φ is a flat connection, dφ + φ ∧ φ = 0.

2. Gauge symmetries

In this section, I will construct a modification of SU(N ) gauge transformation rules for the
non-Abelian two-form, starting from the action

∫
Tr B ∧ F . In terms of its components,
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B = − 1
2 igBa

µν t
a dxµ ∧ dxν . Under a local SU(N ) transformation represented by U, the gauge

field A and the field strength F transform as

A → A′ = UAU † + φ F → F ′ = UFU †. (2)

Invariance of the action under local SU(N ) transformation is usually enforced by assuming
that B transforms homogeneously in the adjoint,

B → B ′ = UBU †. (3)

In addition to SU(N ) gauge transformations, the action is invariant under a non-Abelian
generalization of Kalb–Ramond gauge transformation [35],

B ′ = B + dAξ A′ = A (4)

where ξ is an arbitrary one-form. Because of Bianchi identity, the Lagrangian changes
by a total divergence under this transformation. This will be referred to as vector gauge
transformation; the name Kalb–Ramond transformation will be reserved for the case where d
appears instead of dA in (4). The group of vector gauge transformations is Abelian; two such
transformations with parameters ξ1 and ξ2 combine to yield a transformation with parameter
ξ1 + ξ2. The two types of transformations are independent of each other, and therefore
combine as

A′ = UAU † + φ B ′ = UBU † + dA′ξ ′ (5)

provided that the one-form ξ transforms homogeneously in the adjoint as ξ ′ = UξU †.
The gauge transformation law for B, as given in (3), is not unique because of vector gauge

transformations. It is clear that if the two types of transformations are independent, ξ may not
transform like a connection, i.e. as ξ ′ = UξU † + φ. This is because connections do not form
a group under addition. But it is possible to choose a connection in place of ξ , and construct
novel symmetries which mix the two types of transformations. There is such a connection
which depends on U, the flat connection φ = −dUU †. When φ is inserted in place of ξ ′,
equation (5) is modified to

A′ = UAU † − dUU † B ′ = UBU † + UA ∧ dU † − dU ∧ AU † − dU ∧ dU †. (6)

The SU(N ) transformation U is completely arbitrary, but there is no (other) arbitrary
vector field involved in this equation. So this no longer has anything to do with the vector
gauge transformations. In fact, it is easy to see that (6) is nothing but a modification of the
gauge transformation law for B. To see this, it is sufficient to show that two successive gauge
transformations of B combine according to the group multiplication law of SU(N ).

Consider two gauge transformations U1 and U2, applied successively to the fields.
According to (6), the fields transform under U1 as

A1 = U1AU
†
1 + φ1 B1 = U1BU

†
1 + dA1φ1 (7)

with φ1 = −dU1U
†
1 , and then under U2 as

A′ = U2A1U
†
2 + φ2 B ′ = U2B1U

†
2 + dA2φ2 (8)

with φ2 = −dU2U
†
2 . Substituting for A1 and B1 in (8) their expressions from (7), I get back (6),

but with U = U2U1. The transformation is clearly invertible and continuously connected to the
identity. So it is perfectly acceptable to treat equation (6) as the SU(N ) gauge transformation
law for the fields, i.e. to replace (3) by (6). The action changes only by a total divergence,

Tr B ′ ∧ F ′ = Tr B ∧ F + d Tr(φ ∧ UFU †). (9)

The gauge transformation law of A is of course the standard one, but that of B is quite
unusual. The fact that it is inhomogeneous makes B appear more like a connection than is
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usually thought. For an Abelian gauge group, all commutators vanish, so B ′ = B just as it
should be. Further, equation (6) makes sense only if B is a two-form and A is a one-form,
and therefore is a symmetry of the action only in four dimensions. However, it is possible
to construct similar transformations for higher p-forms in p + 2 dimensions. For example, a
three-form B3 coupled to the gauge field via a B3 ∧ F interaction in five dimensions can be
taken to transform under the gauge group as

B ′
3 = UB3U

† + UAU † ∧ φ ∧ φ − φ ∧ φ ∧ UAU †. (10)

The corresponding variation in the action is then

δ

∫
Tr B3 ∧ F =

∫
d Tr(dφ ∧ UFU †). (11)

It is possible to consider other generalizations of the transformation law in place of
equation (10), but three-forms or higher p-forms and corresponding higher dimensional actions
will not be explored in this paper. One can also consider a non-trivial topology for spacetime,
in which case the objects A,φ and B are not globally defined in general. In such cases, the
modified gauge transformations relate topological charges of A and B, and may lead to novel
descriptions of non-perturbative objects.

For perturbation theory, this modification does not pose any major problem. This is
because the inhomogeneous part is in some sense strictly finite, becoming irrelevant for
gauge transformations infinitesimally close to the identity. On the other hand, infinitesimal
transformations are all that are needed for an analysis using the Becchi–Rouet–Stora–Tyutin
(BRST) differential. Let me write the transformation law for B with Lorentz indices and
coupling constants restored,

B ′
µν = UBµνU

† − [UA[µU †, ∂ν]UU †] +
i

g
[∂µUU †, ∂νUU †] (12)

where I have written Aµ = Aa
µta, Bµν = Ba

µνt
a, etc. The BRST transformations

corresponding to the gauge transformations (6) are

sAa
µ = ∂µωa + gf abcAb

µωc sBa
µν = gf abc

(
Bb

µνω
c + Ab

[µ∂ν]ω
c
)

(13)
sωa = − 1

2gf abcωbωc.

This BRST operator is nilpotent, s2 = 0, as a BRST operator should be. Comparison with the
conventional BRST rules [17, 30–32, 36] shows that the inhomogeneous part of the gauge
transformation law of B is like the vector gauge transformation with ∂µωa playing the role of
the vector parameter. This is why known perturbative calculations, which include the vector
gauge transformations in the analysis, will not need much modification. But quite clearly,
it is not correct to think of the new gauge transformation as a special case of vector
gauge transformation with parameter ∂µωa , since one cannot start from the latter and reach
equation (6).

The total divergence which appears in the variation of the action will contribute to
the conserved current of gauge symmetry. Consider an SU(N ) gauge transformation
U = 1 + igξata infinitesimally close to the identity. The corresponding change in the action is

δ

∫
1

4
εµνρλBa

µνF
a
ρλ = −1

2

∫
εµνρλ∂µ

(
ξa∂νF

a
ρλ

)
. (14)

It follows that the conserved current of gauge symmetry has a topologically conserved
component jaµ

T = − 1
2εµνρλ∂νF

a
ρλ. This looks like a current of non-Abelian Dirac monopoles.

This current is not gauge covariant, but in a configuration where F vanishes on the boundary
(e.g. Euclidean finite action) this makes a vanishing contribution to the conserved charge.
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The appearance of the connection in the symmetry transformation law for another field
might be expected when the connection describes transport on a curved spacetime. For gauge
theories, the explanation is similar. If there is any dynamics at all, the theory must contain
gauge covariant derivatives, and therefore a gauge field. Even when this gauge field is flat, i.e.
it could be made to vanish in some gauge, there will be an inhomogeneous transformation of
B. This point is relevant for the naive generalization of duality between a two-form and a scalar
[37, 38], or outside the horizon of black holes with a non-Abelian topological charge [22].
The modification of the gauge transformation law for B does not affect the duality relation or
the topological charge in these cases.

3. Symmetric actions

It is now easy to construct several novel actions involving A and B, with interesting physical
implications, by demanding invariance only under the gauge transformation (6), and ignoring
vector gauge transformations for the moment. One reason for this exercise is to show that
an inhomogeneous transformation law for B does not automatically rule out construction of
invariant actions. Another reason will become apparent later when I argue that some of
the actions constructed below are gauge-fixed versions of actions with explicit vector gauge
symmetry. Note that

dA′ = −φ ∧ UAU † + UdAU † − UAU † ∧ φ + dφ (15)

so that both the combinations (B + dA) and (B − A ∧ A) transform covariantly under the
gauge group. An interaction Lagrangian of the form Tr(B + dA) ∧ F or Tr(B − A ∧ A) ∧ F

will be exactly invariant under gauge transformations, and the conserved current for SU(N )
gauge transformations will be gauge covariant. These actions differ from Tr B ∧ F by a total
divergence, and violate CP.

Invariant actions can be built by starting from one of these forms of the interaction term.
Then a quadratic term, constructed out of (B + dA), or the covariant field strength (dAB − dF),
can be added for an action invariant under the modified gauge transformations. For example,
a class of CP-violating actions come from using quadratic terms of the type B ∧ B, as in

S1 =
∫

Tr

(
B ∧ F − 1

2
(B + dA) ∧ (B + dA)

)
(16)

which is equivalent to a total divergence after B is eliminated [39]. Obviously, there are many
variations on this theme which arise from replacing B in B ∧ F by either of the two gauge
covariant combinations and from using (B −A∧A) in one or both factors of the second term.
All these actions are classically equivalent, i.e. they differ by total divergences. They are also
equivalent in the path integral, after Gaussian integration over B, to a total divergence. All the
information about these theories resides on the boundary. An interesting point is that some
actions of this CP-violating class vanish altogether upon using the equation of motion for B.
An example is

S′
1 =

∫
Tr((B − A ∧ A) ∧ F − (B + dA) ∧ (B − A ∧ A)). (17)

An action belonging to another class is a first-order formulation of Yang–Mills theory,
along the lines of [17–19], but without vector gauge symmetry,

S2 =
∫

Tr

(
B ∧ F +

1

2
(B + dA) ∧ ∗(B + dA)

)
. (18)

The equation of motion for B is B + dA = ∗F , which can be put back into the action. This
action is then classically equivalent, i.e. equal up to a total divergence, to Yang–Mills theory.
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Again, there are several variations on this theme, but not all of them have local dynamics. One
example of this type is

S′
2 =

∫
Tr(B ∧ F + (B + dA) ∧ ∗(B − A ∧ A)) (19)

which is equivalent to a total divergence. So even though the action (19) written in terms of B
seems to require a metric, actually the dynamics it describes is independent of the metric and
lives fully on the boundary.

Another type of action involves a gauge covariant field strength for B. This can be defined
as H̃ = dA(B + dA) ≡ dA(B−A∧A) = dAB−dF. Like other gauge covariant combinations
mentioned in this section, this field strength is not invariant under vector gauge transformations.
With the help of this field strength, I can write down an action in which the two-form B is
dynamical,

S3 =
∫

Tr

(
1

2
H̃ ∧ ∗H̃ +

1

2
F ∧ ∗F + B ∧ F

)
. (20)

The B-independent part of this action is a nonlinear σ -model for the gauge field A. The term
quadratic in derivatives of A reads, with gauge and Lorentz indices restored,

− 1
4

(
δbd + g2f abcf adeAc

λA
λe

)
∂[µAb

ν]∂
[µAν]d − 1

2g2f abcf ade∂[µAb
ν]A

c
λ∂

[νAλ]dAµe. (21)

This action is not power counting renormalizable, nor should it lead to a consistent quantum
theory, like any nonlinear σ -model in four dimensions. This action also ignores vector gauge
transformations, but I will argue in the next section that it is gauge equivalent to the theory
with an auxiliary field and explicit vector gauge symmetry. In the Abelian limit where the
structure constants vanish, H̃ becomes the usual field strength for a set of Abelian two-forms.
This action then describes a set of topologically massive Abelian gauge fields.

Many other actions can be constructed using (6) as the gauge transformation law and
these will correspond to different physical systems. One can even construct actions which do
not have the B ∧ F term as the cornerstone. I will not explore such actions here. Finally, for
p-forms in p + 2 dimensions, a generalized SU(N ) gauge transformation law can be trivially
constructed by demanding covariance of

Bp − A ∧ A ∧ · · · ∧ A (p factors). (22)

Other generalizations for higher p-forms (p > 2) are clearly possible, including construction
of a ‘tower’ of 1, . . . , p forms.

4. Auxiliary one-form

The actions mentioned in the previous section, except for the pure B ∧ F action and its
alternatives, were not symmetric under vector gauge transformations. These transformations
need to be re-introduced into the discussion. The interaction Lagrangian Tr B∧F is symmetric
up to a total divergence under the vector gauge transformations (4). Any term quadratic in
B, including a possible kinetic term, is not invariant. This is obvious for quadratic terms like
B ∧B or B ∧ ∗B. The ‘field strength’ dAB also changes under these transformations,

dAB → dAB + F ∧ ξ − ξ ∧ F. (23)

Indeed a no-go theorem [40] asserts that a kinetic term for the two-form, invariant under both
types of gauge transformations, cannot be constructed unless additional fields are introduced.
Note that since this theorem was proved by using the BRST structure of these theories, the
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modification of the gauge symmetry displayed in the previous section does not change its
proof.

Some actions which use auxiliary one-form fields to compensate for the vector gauge
transformations have been known for some time [17, 23]. In these actions, a one-form field C
is introduced, and is assumed to shift under these transformations,

A′ = A B ′ = B + dAξ C ′ = C + ξ. (24)

The combination (B − dAC) clearly remains invariant under these transformations, as does
the compensated field strength

H = dAB − F ∧ C + C ∧ F. (25)

How does C behave under local SU(N ) transformations? Clearly, it has to transform in the
adjoint representation. There is now no need for dA to cancel the inhomogeneous part of gauge
transformations of B. Instead, the auxiliary field C can be taken to transform inhomogeneously,
like a connection, under the gauge group,

C ′ = UCU † + φ. (26)

With this choice, the combination (B − dAC) transforms covariantly under the gauge
group, (B − dAC) → U(B − dAC)U †. The field strength H also transforms covariantly,
H → UHU †. Both these combinations, (B −dAC) and H, are also invariant under the vector
gauge transformations in equation (24), with ξ transforming homogeneously in the adjoint,
ξ ′ = UξU †. Therefore, terms quadratic in (B − dAC) or H can be used for construction of
symmetric actions, invariant under both usual and vector gauge transformations. These actions
are the same as those discussed in [17–19, 23, 30–32]. So for the same actions, one can choose
B and C either to transform homogeneously or not, but the choice of inhomogeneity leads to
some interesting new results, as will be seen shortly.

Since the flat connection φ = −dUU † does not transform homogeneously under the
gauge group, but the vector parameter ξ has to do so, it is clear that equation (26) cannot be a
special case of vector gauge transformations, despite the formal similarity. Nor is it possible
to take the vector parameter ξ to transform like a connection, because connections do not
add, so vector gauge transformations will not form a group. This also provides an additional
reason why it is not possible to set C = 0 by a gauge choice. Since C transforms like a
connection, even if it is made to vanish in one gauge, it will be non-zero upon an SU(N ) gauge
transformation.

The BRST transformations for C include additional ghosts due to the vector gauge
transformations [32], but the part that comes from SU(N ) transformations is now

sCa
µ = ∂µωa + gf abcCb

µωc. (27)

The full BRST operator is nilpotent, s2 = 0, and all calculations which use BRST analysis will
go through. However, for finite transformations, C is now a connection under the gauge group,
and the vector gauge transformation (24) shifts it by the difference ξ of any two connections.

There is a further global symmetry of theories which contain B only in the combination
dAB and in the term B ∧ F . If B is shifted by a constant multiple of F, dAB remains invariant
by Bianchi identity, while B ∧ F changes by a total divergence. This shift is independent
of vector gauge transformations, since there is no ξ for which F = dAξ . But when this is
combined with a special type of vector gauge transformation, the result is a novel type of local
symmetry. Consider a local SU(N ) matrix Ũ , and construct the flat connection φ̃ = −dŨ Ũ †.
Symmetry under (24) requires only the difference ξ between any two connections, or a constant
multiple of it, as the transformation parameter. Choose ξ = constant × (A − φ̃).
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In combination with the shift, this choice of ξ produces a completely new type of symmetry
transformation,

A′ = A B ′ = B + α(A − φ̃) ∧ (A − φ̃) C ′ = C + α(A − φ̃) (28)

with α an arbitrary constant and φ̃ an arbitrary flat SU(N ) connection. The compensated field
strength H of (25) remains invariant, while the B ∧ F term changes by a total divergence,

δ

∫
Tr B ∧ F = α

∫
d Tr

(
1

3
A ∧ A ∧ A − φ̃ ∧ F

)
(29)

δ(B − dAC) = −αF δH = 0.

It follows that an action containing the field strength H and the interaction B ∧ F will be
invariant (up to a total divergence) under this set of transformations.

Why is this a new type of symmetry? This seems to be only a local SU(N ) transformation,
similar to gauge transformations, combined with global shift of variables. However, in
general local transformations are generated by local first-class constraints. Vector gauge
transformations are local, and they are generated by local constraints [41, 42]. On the other
hand, the shift B → B + αF is a global transformation. The transformations (28) are a
combination of the two, but cannot be generated by local constraints. The simplest way to see
this is by noting that the local part of these transformations is not connected to the identity; that
is, for infinitesimal φ̃, or Ũ infinitesimally close to the identity, equation (28) cannot be written
as transformations which are themselves infinitesimally close to the identity transformation.
It follows that (28) cannot be generated by any constraint. It also means that this symmetry
will not appear in the BRST charge.

This can be seen directly in the BRST approach, starting with the transformation for
infinitesimal φ̃. For Ũ = 1 + igδλθ̃a ta, with δλ an anticommuting constant and θ̃ a an
anticommuting field (that would be ghost), I can write the infinitesimal changes in the fields
as follows from (28),

δB = αA ∧ A + αδλ(dθ̃ ∧ A + A ∧ dθ̃ ) δC = α(A + δλdθ̃ ) (30)

where dθ̃ = igta∂µθ̃adxµ. Obviously the derivative δ/δλ, which would be part of the BRST
operator, does not have any meaning. This is because α has been treated as a finite constant,
so perhaps it should be replaced by δλα, where α is now an anticommuting constant. But
this will clearly not produce the correct BRST operator either, because then the θ̃ -dependent
terms disappear from equation (30). So there is no BRST construction which includes this
symmetry, which is another way of showing that it cannot be generated by local constraints,
since the BRST charge has to include all local constraints. The transformations of equation (28)
should not therefore be confused with usual local symmetry transformations. These should
properly be called semiglobal transformations, elements of a class of global transformations,
parametrized by both the global parameter α and local SU(N ) matrices Ũ .

Since the BRST charge is fundamental to the local Hamiltonian quantization of gauge
theories (see e.g. [43, 44]), a possible interpretation of the failure to construct a BRST
charge is that the quantum theory of this system must include non-local objects and operators
with appropriate induced actions of the symmetry group, in order to maintain the classical
symmetries. This is not very surprising since a two-form naturally couples to world sheets, so
it can govern the dynamics of fields living on one-dimensional objects.

The fact that the auxiliary connection C can be shifted by the difference of two connections
also provides a way of relating actions constructed in this section with the help of C and those
of the previous section, constructed without C and without vector gauge symmetry. Consider
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the case where these two connections are C and A, i.e. consider a vector gauge transformation
with ξ = α(A − C) where α is some constant. The transformed fields are

B ′ = B + αF + αA ∧ A − αdAC C ′ = (1 − α)C + αA. (31)

The compensated field strength H remains invariant, as it should under a vector gauge
transformation, but in addition it has a familiar form for α = 1 in terms of the transformed
fields. If I choose α = 1 in (31), the two connections become related to each other by C′ = A,

and then the field strength is H = dAB ′−F ∧A+A∧F , which because of the Bianchi identity
can be written as H = dAB ′ − dF . This has the same form as the field strength defined in the
previous section, before the introduction of the auxiliary one-form. So even though C cannot
be set to vanish in (25) by a gauge choice (because a subsequent SU(N ) transformation will
make it non-vanishing), it can be absorbed into B in the above sense, in which it is ‘replaced’
by A. Note also that for α = 1, the invariant combination (B − dAC) can be written as

B ′ − dA′C ′ = B ′ − dAA = B ′ − F − A ∧ A. (32)

This links the actions mentioned in the previous section with those mentioned here. Finally,
note that C can also be ‘replaced’ by an arbitrary flat connection via a vector gauge
transformation.

5. Two connections for two-form

In the previous section, it was shown that the auxiliary vector field C transforms like a gauge
field under usual gauge transformations, and shifts by the ‘difference of two connections’
under a vector gauge transformation. It was also shown that by an appropriate vector
gauge transformation, the auxiliary field could be ‘shifted away’ to be replaced, in a manner,
by the gauge field A. In this section, the picture of C as a second connection in the theory will
be made more explicit, and more actions will be shown to be related by gauge symmetry to
those already mentioned.

The starting point is the observation that the auxiliary connection C always appears
in conjunction with the two-form B. In fact, it is needed for all actions with vector gauge
symmetry, except for the pure B ∧ F action. But even this form of the action need not
be treated as sacrosanct, since C can be absorbed in B in a specific manner using vector
gauge transformations. Then I can conclude that the non-Abelian two-form B and the auxiliary
connection C cannot be separately included in any theory, but has to be considered as a pair.

Is it then possible to formulate the gauge transformation laws of the pair (B,C) purely
in terms of themselves without referring to the usual gauge field A as was done earlier? This
would remove the dependence of B on the gauge field A, which is somewhat artificial, since
there is no converse dependence—atheory of the gauge field A can be defined without invoking
B. If (6) can be described as being in a special gauge for the vector gauge transformations
(24), it may be possible to remove the A dependence in the transformation of B.

Following this argument, let me first define a new set of SU(N ) gauge transformations for
A,B and C as

A′ = UAU † + φ B ′ = UBU † + UCU † ∧ φ + φ ∧ UCU † + φ ∧ φ
(33)

C ′ = UCU † + φ.

These are the same as the rules of (6) and (26), but with the gauge field C taking the place of
the gauge field A in the transformation rule for B. It will be shown later that actions invariant
under (33) are in fact equivalent to actions mentioned in previous sections.
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Just as the earlier transformations, these combine according to the group multiplication
law of SU(N ). This can be seen by applying two successive SU(N ) gauge transformations U1

and U2. One immediate consequence of choosing (33) as the gauge transformation law is that
the B ∧ F term is no longer gauge invariant, as expected from the discussion above. The
action that should be used in its place is

S0 =
∫

Tr(B + dC) ∧ F =
∫

Tr(B ∧ F − C ∧ dF) (34)

where the second equality holds up to a total divergence. The second term of this action looks
like a magnetic monopole term in the Abelian limit. It does not have a clear interpretation for
non-Abelian theories, since dF is not a gauge covariant object.

In any case, this choice of gauge transformation rules simplifies the vector gauge
transformations quite remarkably. Now it is the combination B + dC which transforms
homogeneously, B ′ + dC ′ = U(B + dC)U †. I can now define vector gauge transformations
for the non-Abelian two-form without reference to any connection and in fact these are exactly
the same as the familiar Kalb–Ramond symmetry [35],

B → B + dξ C → C − ξ. (35)

Here ξ is a one-form which transforms homogeneously under the gauge group, i.e. the
difference of two connections, ξ → UξU †. Then (C − ξ) also transforms like a connection,
and the behaviour of B under SU(N ) gauge transformations is maintained. Therefore, just as
in the previous section, the auxiliary one-form C transforms like a gauge field under ordinary
SU(N ) gauge transformations, and shifts by the difference of two connections under Kalb–
Ramond symmetry. I will show that actions invariant under the gauge transformations of (33)
and the Kalb–Ramond transformations (35) are also equivalent to the actions of section 3 by
a symmetry transformation.

Before discussing invariant actions, let me briefly mention one peculiarity of the (B,C)

system. The combination (B + dC) appears to have another obvious symmetry, under
C → C + dχ where χ is a scalar. This symmetry is not compatible with gauge symmetry,
since C + dχ cannot transform as in (33) for any choice of χ . So this symmetry is not likely
to have any physical significance. However, the fields B and C must always appear in the
combination (B + dC) and their derivatives, so this symmetry will always be present in the
action.

Invariant actions involving the (B,C) pair are now easy to construct. Note that a ‘field
strength’ FC = dC + C ∧ C is covariant under SU(N ) gauge transformations, but is not
invariant under Kalb–Ramond transformations. So it will not appear in an invariant action.
Note also that even though C transforms like a gauge field, the gauge covariant derivative will
be defined as dA, since it is a good idea to leave the covariant derivative unmolested after a
Kalb–Ramond transformation.

Then the actions invariant under both the gauge group and the Kalb–Ramond symmetry
are already known. These are simply the actions mentioned in section 3, but with (B + dC)

replacing (B + dA). The B ∧ F interaction has to be replaced by the term S0 of (34) as well.
For example, the action corresponding to the parity violating action S1 of equation (16) is

S1 =
∫

Tr

(
(B + dC) ∧ F − 1

2
(B + dC) ∧ (B + dC)

)
=

∫
1

2
Tr F ∧ F (36)

where the second equality comes from substituting the equation of motion B = F − dC into
the action. Another example is the action for the first-order formulation of Yang–Mills theory,
which is now

S2 =
∫

Tr

(
(B + dC) ∧ F +

1

2
(B + dC) ∧ ∗(B + dC)

)
=

∫
1

2
Tr F ∧ ∗F. (37)
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Again I have substituted the equation of motion for B, which is B = ∗F − dC, into the action
to produce the second equality. Unlike in section 3 where actions were constructed only from
the gauge field A and the two-form B, and only invariance under SU(N ) gauge transformations
was imposed, the requirement of Kalb–Ramond symmetry rules out various combinations. For
example the combination (B − C ∧ C), while covariant under SU(N ) gauge transformations,
is not invariant under the Kalb–Ramond transformation. On the other hand, just as in
section 3, any constant multiple of the gauge field strength F can be added to (B + dC)

for a gauge covariant, Kalb–Ramond invariant combination. It is easy to see that actions built
with these combinations are equivalent to those already mentioned.

As mentioned earlier the gauge covariant derivative, which is needed to construct
dynamical actions, should be taken to be dA, even though C is also a gauge field, because C
is not invariant under Kalb–Ramond transformations. The field strength for the two-form is
constructed with the gauge covariant derivative dA,

H = dA(B + dC) = dAB + A ∧ dC − dC ∧ A (38)

and the action for the dynamical two-form is then

S3 =
∫

Tr

(
1

2
H ∧ ∗H +

1

2
F ∧ ∗F + B ∧ F − C ∧ dF

)
. (39)

Needless to say that this action reduces to the usual Abelian action of topologically massive
fields (either A or B) in the Abelian limit of vanishing structure constants. Another interesting
point is that in this limit the action can be thought of as a (partial) first-order formulation, with
C being a dual gauge field.

In the non-Abelian theory, C is shifted by the difference of two connections under
a Kalb–Ramond transformation. I can choose the two connections to be C and A as in
section 4, ξ = α(C − A). Then

B ′ = B + αd(C − A) C′ = C − α(C − A). (40)

Since this is a special case of the Kalb–Ramond transformations, the combination (B + dC)

remains invariant, as does the field strength H. For α = 1, this has the effect of replacing C
by A. Thus the actions mentioned earlier in section 3 are equivalent to the actions mentioned
in this section as well.

The field strength H of equation (38) is invariant, as before, under a semiglobal
transformation constructed with the help of an arbitrary local SU(N ) transformation matrix Ũ .
These now take a slightly different form,

B ′ = B + α(A ∧ A − φ̃ ∧ φ̃) C ′ = C − α(A − φ̃) (41)

where φ̃ = −dŨ Ũ †. As before, the combination (B + dC) is not invariant under this
transformation, but the field strength H is. Also as before, these transformations are not
connected to the identity for φ̃ → 0.

The conserved current for this transformation depends on the form of the interaction term.
For the action of (39) the current depends on the choice of Ũ and is proportional to

Tr(A ∧ A ∧ A + φ̃ ∧ F). (42)

6. Summary of results

In this paper, I have argued that an antisymmetric tensor potential valued in the adjoint
representation could have an inhomogeneous component in its gauge transformation rule, as
shown in (6). It is not clear if there is a geometrical interpretation of this rule, i.e. a geometrical
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object which corresponds to this. But at any rate it opens up new avenues of investigation.
These new gauge transformation rules are not in contradiction with theorems based on BRST
analysis. In particular, the new rules do not obviate the need for an auxiliary one-form in
actions containing terms quadratic in B.

I have also shown that the auxiliary one-form C transforms as a gauge field. Therefore it
cannot be shifted away to zero by a vector gauge transformation, because an ordinary gauge
transformation changes a vanishing gauge field to a non-vanishing flat connection. But it can
be ‘replaced’ by the usual gauge field A via a vector gauge transformation. The actions in
section 4 can be related in this way to the actions in section 3, which may be thought of as
being somewhat analogous to a unitarity gauge choice for these theories. An outcome of this
is that the action for the topological mass generation mechanism becomes gauge equivalent
to a nonlinear σ -model for the gauge field, as in (21). That action also has a new kind of
semiglobal symmetry which depends on arbitrary flat connections, but is connected to the
identity only in the limit of a vanishing global parameter. This symmetry is not generated
by local constraints, unlike all other known local symmetries in classical field theory. The
conserved current or this symmetry is parametrized by the space of flat connections. It is in
fact possible to construct a family of BRST operators, parametrized by flat connections, which
anticommute with one another.

I have also shown that it is possible to define inhomogeneous gauge transformation rules
for the pair of fields (B,C) without referring to the gauge field A. The actions invariant under
these rules are symmetric under the usual (Abelian) Kalb–Ramond symmetry. Unlike for the
vector gauge symmetry, the integral of B on a closed 2-surface is invariant under Kalb–Ramond
symmetry. The actions of section 5 are also equivalent, by gauge transformations and field
redefinitions, to the actions discussed in the earlier sections. The symmetries and actions
mentioned in this paper should be useful for all B ∧ F type theories, including gravity.

After this paper was circulated as an e-print, a set of transformations for B, similar in
some respects to those found here, was found from a different approach [45], suggesting that
the geometrical description for these fields may be as connections on non-Abelian gerbes [46].
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